Synthesis and reactions of reduced flavones

Paul W. G roundwater, ${ }^{*, a,}{ }^{\text {, }}$ D avid E. Hibbs, ${ }^{\text {a }}$ M ichael B. H ursthouse ${ }^{\text {a }}$ and M iklós N yerges ${ }^{\text {b }}$

${ }^{\text {a }}$ D epartment of Chemistry, U niversity of Wales, C ardiff, PO Box 912, C ardiff CF 1 3T B, UK
${ }^{\mathrm{b}}$ R esearch Group of the H ungarian A cademy of Sciences, Department of Organic Chemical Technology, Technical U niversity of Budapest, H-1521 Budapest P OB 91, H ungary

The cycloadditions of a series of 4 H -pyran-4-ones 3c-e with electron-rich dienes 11a,b to give reduced flavones 12 is described. The subsequent reactions of these reduced flavones with HCI , trifluoroacetic anhydride, ethyl anthranilate 19a and anthranilonitrile 19b is also described.

We have recently described the synthesis of a series of pyranoacridinones, e.g. $\mathbf{1},{ }^{1}$ which are potent inhibitors of the

spontaneous proliferation of a human-derived gastric carcinoma cell line, MKN 45, but are non-cytotoxic. ${ }^{2}$ A key intermediate in the synthesis of these pyranoacridinones is 7 -oxo-5,6,7,8-tetrahydroflavone 2 and, as part of our ongoing investigation into the biological potential of these pyranoacridinones, we have become interested in an alternative, more efficient, synthesis of reduced flavones. We have previously reported a novel method for the synthesis of reduced flavones based on the Diels-Alder reactions of 4 H -pyran-4-ones with electron-rich dienes. ${ }^{3}$ To date very little attention has been paid to cycloadditions of 4 H -pyran-4-ones, in contrast to the welldocumented reactivity of 4 H -benzopyran- 4 -ones ${ }^{4-8}$ or benzothiopyranones. ${ }^{9}$ The only example of the cycloaddition of 4 H -pyran-4-ones is a footnote by M CCombie et al. ${ }^{10}$ in their paper on the preparation of these compounds in which pyranone 3c readily reacted with diazomethane in a 1,3-dipolar cycloaddition to give the adduct 4. In this paper we describe our experimental procedures for the preparation of these ring systems, together with some observations on their chemical reactivity.

[^0]
Results and discussion

Synthesis of 4H-pyran-4-ones

Initially, we required a standard synthesis of a range of substituted pyranone dienophiles for the Diels-A Ider reaction. A fter reviewing the literature the following methodologies were used, mostly with slight modifications. We have prepared the 2-phenyl-4H -pyran-4-one 3a by a modification of Reynolds' method (Scheme 1). ${ }^{11}$ The main differences in our procedure are

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; ii, $\left(\mathrm{CH}_{3}\right)_{2^{-}}$ $\mathrm{NCH}\left(\mathrm{OCH}_{3}\right)_{2}, \mathrm{DMF}$; iii, $\mathrm{HClO}_{4}, \mathrm{EtOH}$
the use of boron trifluoride-diethyl ether rather than gaseous boron trifluoride, and the work-up procedure in the final step (three steps, 21% overall yield). The method used first by Borsche and Peter ${ }^{12}$ proved to be an easy route to ethyl 4-oxo-6-phenyl-4H -pyran-2-carboxylate 3b, in good yield (Scheme 2).

Scheme 2 Reagents and conditions: $\mathrm{i}, \mathrm{Br}_{2}$; $\mathrm{ii}, \mathrm{AcOK}$, dry EtOH
The preparation of 6-aryl-4-oxo-4H-pyran-3-carboxylates 3c-e has been described by McCombie et al. (Scheme 3). ${ }^{10}$ This procedure is based on simple starting materials with two effective steps for the formation of the pyranone ring. We have altered

Scheme 3 Reagents and conditions: i, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}\left(\mathrm{OCH}_{3}\right)_{2}, 80^{\circ} \mathrm{C}$; ii $\mathrm{ArCOCl}, \mathrm{LiN}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2},-70^{\circ} \mathrm{C}$; iii, $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, room temp.
the method for the synthesis of the intermediate enaminone 10; instead of using a dimethylformamide (D M F)-dimethyl sulfate adduct, the enaminone $\mathbf{1 0}$ was formed by simple heating of the corresponding keto ester 9 with dimethylformamide dimethyl acetal without the presence of any solvent. ${ }^{13}$ With this modification we have prepared the pyranones $\mathbf{3 c}$ - 3 e in $40-60 \%$ yield.

D iels- A Ider reactions

The pyranone 3a without any additional electron-withdrawing groups, and the pyranone 3b, were unreactive towards 2 trimethylsilyloxybuta-1,3-diene 11a and Danishefsky's diene 11 b under normal or forced (neat, $160^{\circ} \mathrm{C}$ or Lewis-acid catalyst) conditions, while pyranones 3 c - 3e reacted smoothly with 11 b and the reaction resulted in formation of the cycloadducts 12a-c in good yield (Scheme 4). The addition of 3c to 2

trimethylsilyloxybuta-1,3-diene 11a under the same conditions proceeded more slowly, due to the lower reactivity of the diene, and gave the cycloadduct 12d in poor yield (12d could not be isolated; the ketone 16c was isolated in 16% overall yield, after treatment of 12d with 0.01 m aqueous $\mathrm{HCl}-\mathrm{THF}$, followed by chromatography).

The ${ }^{1} H$ NMR spectra of the cycloadducts indicate the presence of only one diastereoisomer, which is quite remarkable as the analogous process led to a 1:1 mixture of diastereoisomers in the benzopyranone series. ${ }^{4}$

We have attempted to determine the relative stereochemistry of cycloadduct 12a by ${ }^{1} \mathrm{H}\left\{{ }^{1} \mathrm{H}\right\}$ N OE difference spectroscopy, but irradiation of the doublet for $\mathrm{H}-5(\delta 4.56)$ gave only a large NOE to H-6 and a medium NOE to the OM e. Irradiation of the OM e ($\delta 3.23$) was inconclusive. The 3D structure of the cycloadduct 12a was therefore determined by X-ray crystallography and shows that the methoxy group at C-5 and the ester group at C-4a are trans to one another, with the methoxy group in a pseudo-axial position (Fig. 1).

Similar observations were made when the ester-stabilised azomethine ylide 14 (generated from imine 13 in the presence of LiBr as a catalyst) acted as a 4π component in a 1,3-dipolar cycloaddition; ${ }^{14}$ whilst $\mathbf{3 a , b}$ were unreactive, in the reaction with pyranone 3d the cycloadduct 15 was formed in good yield (Scheme 5). The configuration of cycloadduct $\mathbf{1 5}$ depicted was verified by ${ }^{1} \mathrm{H}\left\{{ }^{1} \mathrm{H}\right\}$ NOE difference spectroscopy, the irradiation of H-7 ($\delta 5.14$) caused enhancement of $\mathrm{H}-7 \mathrm{a}(5 \%)$, and

Fig. $1 \quad$ X-R ay crystal structure of cycloadduct 12a

Scheme 5 R eagents and conditions: $\mathrm{i}, \mathrm{LiBr}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{M} \mathrm{eCN}$, room temp.
of the ortho protons of the 7-phenyl group (7\%) whilst there was no N OE observed between $\mathrm{H}-7$ and $\mathrm{H}-5$.

D eprotection of Diels-Alder adducts

Treatment of the cycloadducts $\mathbf{1 2 a}, \mathbf{b}$ with 0.01 m HCl in THF gave the corresponding desilylated products 16a,b. The brief treatment of 12 or $\mathbf{1 6}$ with trifluoroacetic anhydride (TFAA) gave the enones 17a,b (Scheme 6). In both the treatment with hydrochloric acid and the TFAA, epimerisation of $\mathrm{H}-8 \mathrm{a}$ was observed to give a $1: 1$ mixture of diastereoisomers. This is unimportant in the synthesis of the pyranoacridinones, e.g. 1, since the groups at the 4a- and 8a-positions will be lost upon aromatisation.

Reduction of enone 17a

To achieve the synthesis of 7-oxotetrahydroflavone $\mathbf{2}$ or an analogue the selective reduction of the 5,6 -double bond of 17 a was necessary (the direct synthesis of $\mathbf{1 6 c}$ proceeded in poor yield). Our attempts to reduce 17a by means of $\mathrm{PtO}_{2}-\mathrm{H}_{2}$, tris(triphenylphosphine)chlororhodium(r) (ethanol, $60^{\circ} \mathrm{C}$, $40 \mathrm{psi} \ddagger$), ${ }^{15}$ or Red-AI-CuBr ${ }^{16}$ were unsuccessful. In all cases only the starting material was recovered. The reduction of 17a with Red-AI gave a complex mixture of products. The use of a large excess of NaBH_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution resulted in the reduction of the 7oxo group quantitatively and selectively, giving a mixture of diastereoisomers 18 (Scheme 7).

Reaction of reduced flavones with anthranilic acid derivatives

The condensation of $\mathbf{1 2 a}$ or $\mathbf{1 2 b}$ with the primary aromatic amines under the standard conditions for azeotropic removal

[^1]

Scheme 6 Reagents and conditions: i, 0.01 м HCI-THF; ii, TFAA $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

of water, in the presence of a catalytic amount of toluene-psulfonic acid (PTSA), resulted in an interesting degradation of the flavone ring system ($\mathbf{1 2}$ was deprotected immediately under the harsh conditions used) (Scheme 8). F rom the complex mix-

Scheme 8 R eagents and conditions: i, toluene, PTSA, reflux
ture of products obtained from the reaction of 12a or 12b with ethyl anthranilate 19a, three were identified and at least two by-products remained unidentified (shown by TLC). The main
product 20a crystallised out from the reaction mixture after cooling in both cases. Compounds 21 (identified by comparison of spectroscopic data with literature values ${ }^{17}$) and 22a, 22b and 22c were separated by column chromatography as minor products. The same reactivity was observed in the reaction of anthranilonitrile 19b with 12a. These results suggest that the reaction with the amine is not regioselective, i.e. unlike our earlier work with $\mathbf{2}^{1}$ there is no distinction between the two carbonyl groups.

Experimental

M ps were determined on a Kofler hot-stage and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a Bruker WM 360 spectrometer at 360 and 90 MHz respectively. ${ }^{1} \mathrm{H}$ NMR coupling constants (J) are given in Hz and chemical shifts (δ) are relative to an internal standard of tetramethylsilane. Low resolution electron impact mass spectra were obtained on a Varian CH 5-D spectrometer. Elemental analyses were performed on a Perkin-Elmer 240B. IR spectra were recorded on a Perkin-Elmer 1600 series FT-IR spectrometer using sodium chloride plates. Thin layer chromatography was performed on M erck silica gel $60 \mathrm{~F}_{254}$ and dry column flash chromatography on M erck silica gel 60 H . Tetrahydrofuran was dried from sodium-benzophenone.

C rystal data for cycloadduct 12a

$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Si}, \quad \mathrm{M}=444.59$. $\quad \mathrm{M}$ onoclinic, $\quad a=18.303(2), \quad b=$ $6.7340(5), c=19.987(3) \AA, \beta=96.307(12)^{\circ}$ (by least-squares refinement of the setting angles for 250 reflections within $\left.\theta=2.05-25.09^{\circ}\right), \mathrm{V}=2448.2(5) \AA^{3}$, space group $\mathrm{P} 2 \mathrm{I}_{1} / \mathrm{c}$ (14), $Z=4, D_{m}=1.206 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=952$. White crystals. Crystal dimensions $0.25 \times 0.18 \times 0.14 \mathrm{~mm}, \mu(\mathrm{M} \mathrm{o}-\mathrm{K} \alpha)=0.131 \mathrm{~mm}^{-1}$.

D ata collection and processing

FAST TV A rea detector diffractometer following previously described procedures. ${ }^{18}$ From the ranges scanned, 9823 data were collected ($2.05 \leq \theta \leq 25.09^{\circ}$), 3687 unique ($\mathrm{R}_{\text {int }}=0.0699$).

Structural analysis and refinement

The structure was solved via direct methods (SHELX-S) ${ }^{19}$ and refined on $\mathrm{F}_{0}{ }^{2}$ by full-matrix least-squares (SHELXL-93) ${ }^{20}$ using all unique data corrected for Lorentz and polarisation factors to final wR (on $F_{0}{ }^{2}$) and R (on F) values of 0.1015 and 0.0692 for 287 parameters (non-hydrogen atoms anisotropic; hydrogens in idealised positions with $\mathrm{U}_{\text {iso }}$ stied to the $\mathrm{U}_{\text {eq }} \mathrm{S}$ of the parents). The corresponding R values for data with $I>2 \sigma(I)$ are 0.0973 and 0.0433 , respectively. The weighting scheme used was $\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0467 \mathrm{P})^{2}\right]$, where $\mathrm{P}=\left[\max \left(\mathrm{F}_{\mathrm{o}}\right)^{2}+2\left(\mathrm{~F}_{\mathrm{c}}\right)^{2}\right] / 3$; this gave satisfactory agreement analyses. Sources of scattering factors as in ref. 20. A tomic coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge C rystallographic D ata C entre.§

2-Phenyl-4H -pyran-4-one 3a

(i) 2,2-D ifluoro-6-methyl-4-phenyl-1,3,2-dioxaborinin-1-ylium-2-uide 5. A cetophenone ($2.5 \mathrm{~g}, 20.8 \mathrm{mmol}$) was dissolved in acetic anhydride ($4.3 \mathrm{~g}, 47.7 \mathrm{mmol}$), cooled to $5-10^{\circ} \mathrm{C}$ and boron trifluoride-diethyl ether ($1.6 \mathrm{~g}, 11 \mathrm{mmol}$) was added. A fter 2 h stirring at room temperature the reaction mixture was evaporated in vacuo then diluted with diethyl ether ($30 \mathrm{~cm}^{3}$). The precipitated solid was collected as yellow crystals of the benzoylacetone-boron trifluoride complex 5 ($2.84 \mathrm{~g}, 65 \%$), mp $146^{\circ} \mathrm{C}$ (lit., ${ }^{11} 147-150{ }^{\circ} \mathrm{C}$) (Found: C, 57.3; $\mathrm{H}, 4.3 . \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BF}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 57.2 ; \mathrm{H}, 4.3 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1632,1541$ and

[^2]779; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and 7.60-7.90 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z 210 ($\mathrm{M}^{+}, 24 \%$), 209 ($\mathrm{M}^{+}-1,37$), 195 (15), 191 (12), 115 (9), 105 (100), 89 (8), 77 (86), 63 (10), 51 (44) and 43 (87).
(ii) 6-(2-D imethylaminovinyl)-2,2-difluoro-4-phenyl-1,3,2-dioxaborinin-1-ylium-2-uide 6. 2,2-D ifluoro-6-methyl-4-phenyl-1,3,2-dioxaborinin-1-ylium-2-uide 5 ($1.0 \mathrm{~g}, 4 \mathrm{mmol}$) was heated as a suspension in a mixture of dry N, N-dimethylformamide (2 cm^{3}) and N, N-dimethylformamide dimethyl acetal ($0.7 \mathrm{~cm}^{3}, 5.3$ mmol), with stirring, for 1 h at $95-100^{\circ} \mathrm{C}$. On cooling, a yellowgreen solid 6 precipitated ($0.57 \mathrm{~g}, 54 \%$), mp $215^{\circ} \mathrm{C}$ (lit., ${ }^{11} 215-$ $216^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 59.0 ; \mathrm{H}, 5.2 ; \mathrm{N}, 5.3 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BF}_{2} \mathrm{~N} \mathrm{O}_{2}$ requires C, 58.9; H, $5.3 ; \mathrm{N}, 5.3 \%$); $v_{\text {max }}(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1706,1640,1565$, 1262 and 823 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.25(3 \mathrm{H}, \mathrm{s}$. $\left.\mathrm{NCH}_{3}\right), 5.05\left[1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0, \mathrm{CH}=\mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}\right], 6.13(1 \mathrm{H}, \mathrm{s}$, H-5), 7.41-7.52 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.93 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9, \mathrm{Ph}$) and 8.09 [1 H, d, J 12.0, CH N (CH $)_{2}$]; m/z $265\left(\mathrm{M}^{+}, 38 \%\right)$, 246 (30), 221 (41), 200 (25), 158 (27), 146 (17), 132 (28), 118 (50), 97 (62), 77 (69), 69 (93), 55 (60) and 42 (100).
(iii) 2-P henyl-4H -pyran-4-one 3a. Boron complex 6 ($0.3 \mathrm{~g}, 1.13$ mmol) was refluxed in ethanol ($10 \mathrm{~cm}^{3}$) and 60% aqueous perchloric acid ($0.5 \mathrm{~cm}^{3}$) for 6 h . The solvent was evaporated and the residue was dissolved in water ($5 \mathrm{~cm}^{3}$) and extracted with chloroform ($3 \times 10 \mathrm{~cm}^{3}$). The combined organic layers were dried over magnesium sulfate and evaporated. The resulting solid was recrystallised from ethanol to give 2-phenyl-4H-pyran-4-one 3 a as a white solid ($0.14 \mathrm{~g}, 75 \%$), $\mathrm{mp} 100-102{ }^{\circ} \mathrm{C}$ (lit., ${ }^{11} 101-103{ }^{\circ} \mathrm{C}$) (Found: $\mathrm{C} ; 76.6 ; \mathrm{H}, 4.8 . \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$ requires C , 76.7 ; $\mathrm{H}, 4.7 \%$); $v_{\text {max }}\left(\mathrm{N}\right.$ ujol) $/ \mathrm{cm}^{-1} 1650$ (C=O), 1608, 1414, 1255 , 1051, 1015, 925, 891 and 817 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.8$ and 2.4, H-5), 6.80 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4, \mathrm{H}-3$), 7.46-7.52 (3 H, m, H-3', -4' and $\left.-5^{\prime}\right), 7.75-7.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and $\left.-6^{\prime}\right)$ and $7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8$, H-6); m/z 172 (M $\left.{ }^{+}, 54 \%\right), 144(78), 115(57), 102$ (100), $89(20)$, 77 (47), 69 (30) and 51 (52).

E thyl 4-oxo-6-phenyl-4H -pyran-2-carboxylate 3b

(i) E thyl 2,4-dioxo-6-phenylhex-5-enoate 7. Compound 7 was prepared according to the literature procedure ${ }^{12}$ as yellow crystals (76%), mp $82-83^{\circ} \mathrm{C}$ (lit., ${ }^{12} 84{ }^{\circ} \mathrm{C}$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1725$ ($\mathrm{C}=0$) , 1574, 1264, 1106, 982 and 778; $\delta_{\mathrm{H}}(\mathrm{CDCI})_{3} 1.41(3 \mathrm{H}, \mathrm{t}$, J 7, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), $3.93(0.2 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, enol form), $4.31(2 \mathrm{H}, \mathrm{q}$, J 7, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 6.55 ($1.8 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$, keto form), $6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15.9, H-6), 7.40-7.44 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime},-4^{\prime}$ and -5), $7.55-7.59(2 \mathrm{H}$ $\mathrm{m}, \mathrm{H}-2^{\prime}$ and -6^{\prime}) and 7.74 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.9, \mathrm{H}-5$); m/z $246\left(\mathrm{M}^{+}\right.$, $9 \%), 173$ (100), 144 (8), 131 (62), 115 (60), 103 (74), 91 (32), 77 (84), 69 (69), 63 (24) and 51 (56).
(ii) E thyl 5,6-dibromo-2,4-dioxo-6-phenylhexanoate 8. Compound 8 was prepared according to the literature procedure ${ }^{12}$ as yellow crystals(90%), mp $106-107^{\circ} \mathrm{C}\left(\right.$ lit.,$\left.^{12} 107^{\circ} \mathrm{C}\right)$; $v_{\max }(\mathrm{N}$ ujol)/ $\mathrm{cm}^{-1} 1748(\mathrm{C}=0), 1643,1257,1131,1011$ and $816 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.41\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 3.95(0.2 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, enol form, $4.40(2 \mathrm{H}$, q, J $7, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8, \mathrm{H}-6), 5.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8$, $\mathrm{H}-5), 6.55(1.8 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$, keto form) and 7.26-7.46 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\mathrm{m} / \mathrm{z} 407\left(\mathrm{M}^{+}+1,2 \%\right), 182(6), 173$ (36), 143 (31), 131 (37), 115 (68), 103 (57), 91 (13), 77 (75), 69 (100) and 51 (42).
(iii) E thyl 4-oxo-6-phenyl-4H -pyran-2-carboxylate 3b. Compound $\mathbf{3 b}$ was prepared according to the literature procedure ${ }^{12}$ as white crystals (65%), mp $127-128{ }^{\circ} \mathrm{C}$ (lit., ${ }^{12} 130^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 69.1 ; \mathrm{H}, 4.9 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.9 ; \mathrm{H}, 4.9 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1735(\mathrm{C}=0)$, 1635 ($\mathrm{C}=0$) , 1614, 1255, 1093, 1058, 1016, 951, 923, 893 and 861 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.41(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\left.\mathrm{CH}_{3}\right), 4.40\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH} \mathrm{H}_{3}\right), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.2, \mathrm{H}-5), 7.12$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.2, \mathrm{H}-3$), $7.27-7.55\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime},-4^{\prime}\right.$ and -5^{\prime}), and 7.75-7.88 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$ and -6^{\prime}); m/z $244\left(\mathrm{M}^{+}, 27 \%\right)$, 216 (23), 188 (25), 171 (9), 144 (30), 112 (33), 102 (100), 77 (32) and 63 (24).

Synthesis of 2-(dimethylamino)methylene-3-oxobutanoates 10 - general procedure

Heating of an oxobutanoates 9 with equimolar quantities of
N, N-dimethylformamide dimethyl acetal at $80^{\circ} \mathrm{C}$ in the absence of solvent resulted in the formation of the desired product. The methanol generated in the reaction was removed in vacuo to give an oil $\mathbf{1 0}$, in quantitative yield, which was used in the next step without further purification.
tert-Butyl 2-(dimethylamino)methylene-3-oxobutanoate 10a. Orange oil; $v_{\text {max }}\left(\mathrm{N}\right.$ ujol)/cm ${ }^{-1}$ 2974, 2927, 1690 ($\mathrm{C}=0$), 1643 ($\mathrm{C}=0$) , 1574, 1486, 1426, 1366, 1291, 1225, 1162, 1114, 1067, 967, 882 and $850 ; \delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 1.5\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 2.3$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.0\left[6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and $7.5(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=)$; $\mathrm{m} / \mathrm{z} 213$ (${ }^{+}$+ 14%), 157 (10), 142 (45), 124 (78), 98 (100), 82 (18), 70 (20), 57 (58) and 43 (95).

Benzyl 2-(dimethylamino)methylene-3-oxobutanoate 10b. Red oil; $v_{\text {max }}\left(\mathrm{N}\right.$ ujol)/ cm^{-1} 2927, 1688 (C=O), 1641 (C=O) , 1578, 1422, 1362, 1283, 1215, 1187, 1114, 1050, 969, 816, 752 and 700 ; $\delta_{\mathrm{H}}\left(60 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 2.2\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.9\left[6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.1$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.3(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$ and $7.6(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=)$.

Preparation of 6-aryl-4-oxo-4H -pyran-3-carboxylates 3c, 3d and

 3 eThese were prepared according to the procedure described by McCombie et al. ${ }^{10}$
tert-B utyl 4 -ox0-6-phenyl-4H -pyran-3-carboxylate 3c. Pale brown solid (61%), $\mathrm{mp} 98-100^{\circ} \mathrm{C}$ (lit., ${ }^{10} 99-102^{\circ} \mathrm{C}$) (Found: C, 70.4; $\mathrm{H}, 6.1 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 70.6 ; \mathrm{H}, 5.9 \%\right)$; $v_{\text {max }}(\mathrm{Nujol}) /$ $\mathrm{cm}^{-1} 1705(\mathrm{C}=0), 1664(\mathrm{C}=0), 1347,1149,1103,975,908,839$ and 772; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.57\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 6.84(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.49$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$ and -5^{\prime}), $7.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right), 7.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and -6^{\prime}) and $8.78(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) ; \mathrm{m} / \mathrm{z} 272\left(\mathrm{M}^{+}, 20 \%\right), 257(8), 217$ (37), 199 (38), 171 (35), 147 (28), 144 (32), 115 (43), 95 (42), 75 (56), 69 (41), 65 (42), 51 (60) and 42 (100).
tert-B utyl 4-0x0-6-(p-methoxyphenyl)-4H -pyran-3-carboxylate 3d. Light brown solid (52\%), mp 119-120 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.5; $\mathrm{H}, 6.0 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 67.5 ; \mathrm{H}, 6.0 \%\right)$; $v_{\max }(\mathrm{N} \mathrm{ujol}) / \mathrm{cm}^{-1}$ 1734 ($\mathrm{C}=0$), 1644 ($\mathrm{C}=0$), 1621, 1604, 1574, 1512, 1399, 1310, 1296, 1251, 1235, 1178, 1160, 1077, 1034, 914, 856 and 785; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.54\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 6.75(1 \mathrm{H}, \mathrm{s}$, H-2), 6.98-7.02 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$ and -5^{\prime}), $7.67-7.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and -6^{\prime}) and $8.48(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5)$; m/z $302\left(\mathrm{M}^{+} 60 \%\right), 287(5), 247$ (51), 229 (60), 202 (78), 174 (40), 161 (54), 146 (47), 135 (60), 115 (41), 102 (45), 89 (55), 77 (56), 69 (53), 63 (54), 57 (100), 53 (64), 43 (57) and 41 (89).

Benzyl 4-oxo-6-phenyl-4H -pyran-3-carboxylate 3e. Bright red solid (32\%), mp 85-89 ${ }^{\circ} \mathrm{C}$ (Found: C, 74.5; H, 4.8. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 4.6 \%$); $v_{\text {max }}(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1706,1655,1622$, 1395, 1342, 1294, 1266, 1154, 1108, 1025, 994, 969 and 912; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.29-7.39(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.43-7.52(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.71-7.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and -6^{\prime}) and $8.58(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) ; \mathrm{m} / \mathrm{z} 306\left(\mathrm{M}^{+}, 5 \%\right), 288(3), 200(88)$, 172 (100), 144 (10), 129 (22), 115 (52), 105 (71), 91 (95), 77 (96), 69 (54) and 51 (64)

Diels-Alder reactions- general procedure

The pyranone $\mathbf{3 c - e}$ (7 mmol) was dissolved in anhydrous toluene ($4 \mathrm{~cm}^{3}$) and the diene $\mathbf{1 1 b}$ (9.3 mmol) was added. The mixture was heated at $110^{\circ} \mathrm{C}$ for 6 h . The residue was evaporated and recrystallised from diethyl ether-light petroleum (bp 40$60^{\circ} \mathrm{C}$) to yield the desired product 12 as a white powder.
4a-(tert-B utoxycarbonyl)-5-methoxy-2-phenyl-7-trimethyl-silyloxy-4a,5,8,8a-tetrahydro-4H-benzo[b]pyran-4-one 12a. White powder ($1.62 \mathrm{~g}, 52 \%$), mp $125-127^{\circ} \mathrm{C}$ (Found: C, 65.0; $\mathrm{H}, 7.5 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Si}$ requires $\mathrm{C}, 64.8 ; \mathrm{H}, 7.4 \%$); $v_{\text {max }}(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1}$ 1730 ($\mathrm{C}=0$), 1652 ($\mathrm{C}=0$) , 1598, 1571, 1334, 1251, 1216, 1187, $1162,1077,1017,886$ and $851 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.23\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OSiM} \mathrm{e}_{3}\right)$, $1.48\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{t}^{\mathrm{t}}\right.$), $2.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 19$ and $4.4, \mathrm{H}-8), 2.69(1 \mathrm{H}, \mathrm{d}$, J 19, H-8), 3.23 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.56 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.5, \mathrm{H}-5$), 5.27 (1 H, d, J 4, H-8a), 5.30 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.5, \mathrm{H}-6$), 6.17 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), $7.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right.$ and $\left.-5^{\prime}\right), 7.43\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right)$ and $7.74(2 \mathrm{H}$, $m, H-2^{\prime}$ and $\left.-6^{\prime}\right) ; \mathrm{m} / \mathrm{z} 444\left(\mathrm{M}^{+}, 1 \%\right), 343(22), 223$ (20), 157 (20), 141 (25), 105 (72), 89 (11), 77 (24), 73 (78) and 57 (100).

4a-(tert-B utoxycarbonyl)-5-methoxy-2-(4'-methoxyphenyl)-7-trimethyIsilyloxy-4a,5,8,8a-tetrahydro-4H -benzo[b]pyran-4one 12b. White powder ($1.76 \mathrm{~g}, 53 \%$), mp 163-165 ${ }^{\circ} \mathrm{C}$ (Found: C, 63.3; $\mathrm{H}, 7.2 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{7}$ Si requires $\mathrm{C}, 63.3 ; \mathrm{H}, 7.2 \%$); $v_{\text {max }}(\mathrm{N}$ ujol)/ $\mathrm{cm}^{-1} 1731(\mathrm{C}=0)$, 1671 ($\mathrm{C}=0$) , 1594, 1569, 1510, 1426, 1350, 1307, 1254, 1237, 1218, 1189, 1121, 1080, 1030, 1000, 944, 905 , 887 and $851 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.37\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OSiM} \mathrm{e}_{3}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$, 2.47 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 18.6$ and $3.6, \mathrm{H}-8$), 2.65 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.6, \mathrm{H}-8$), 3.21 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{OM}$ e), 3.83 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OM}$ e), 4.54 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.6$, H-5), 5.22-5.26 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$ and -6), $6.07(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3)$, 6.88 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-3^{\prime}$ and -5^{\prime}) and 7.68 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-2^{\prime}$ and -6^{\prime}); $\mathrm{m} / \mathrm{z} 474$ (M $\left.{ }^{+}, 20 \%\right), 459$ (5), 418 (8), 373 (75), 359 (12), 341 (13), 319 (21), 303 (12), 287 (10), 241 (10), 223 (53), 193 (22), 157 (60), 141 (55), 135 (77), 77 (51), 73 (75), 57 (100) and 41 (75).

4a-(Benzyloxycarbonyl)-5-methoxy-2-phenyl-7-trimethyl-silyloxy-4a,5,8,8a-tetrahydro-4H -benzo[b]pyran-4-one 12c. White powder ($1.77 \mathrm{~g}, 53 \%$), mp $101-103^{\circ} \mathrm{C}$ (Found: C, 68.1; $\mathrm{H}, 6.1 . \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{6}$ Si requires $\mathrm{C}, 67.8 ; \mathrm{H}, 6.3 \%$); $v_{\text {max }}(\mathrm{Nujol}) /$ $\mathrm{cm}^{-1} 1736$ ($\mathrm{C}=0$), 1654 ($\mathrm{C}=0$) , 1602, 1572, 1345, 1292, 1257, 1229, 1196, 1092, 1074, 1051, 1022, 1004, 956, 890 and 872 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.30\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OSiM} \mathrm{e}_{3}\right), 2.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 18.7$ and 4.5, H-8), 2.70 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.7, \mathrm{H}-8$), 3.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), 4.74 (1 H, d, J 5.3, H-5), 5.36 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$ Ph $), 5.30-5.42(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and -8a), 6.29 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 7.26-7.62 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$) and 7.817.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$ and -6^{\prime}); m/z 478 ($\mathrm{M}^{+}, 9 \%$), 463 (4), 379 (25), 343 (78), 325 (27), 317 (26), 311 (10), 271 (19), 241 (10), 223 (59), 200 (38), 172 (62), 157 (66), 141 (56), 121 (38), 115 (36), 105 (82), 91 (100), 77 (84), 73 (89), 65 (65), 59 (49) and 45 (38).
4a-(tert-B utoxycarbonyl)-2-phenyl-4a,5,6,7,8,8a-hexahydro4H -benzo[b]pyran-4,7-dione 16c. Pyranone $3 \mathrm{c}(0.3 \mathrm{~g}, 1.10 \mathrm{mmol}$) was dissolved in toluene ($1 \mathrm{~cm}^{3}$) and diene 11a ($0.93 \mathrm{~g}, 6.5$ $\mathrm{mmol})$ was added. The mixture was heated at $110^{\circ} \mathrm{C}$ for 24 h . The residue was treated with $0.01 \mathrm{~m} \mathrm{HCl}-\mathrm{THF}\left(5 \mathrm{~cm}^{3}\right)$, then washed with saturated aqueous sodium hydrogen carbonate (2 $\left.\mathrm{cm}^{3}\right)$, dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and the solvent evaporated. Purification by flash column chromatography gave a white powder 16c (62 $\mathrm{mg}, 18 \%$), mp 157-158 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 70.1$; $\mathrm{H}, 6.9 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$ requires C, $70.2 ; \mathrm{H}, 6.8 \%$); $v_{\max }(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1732$ ($\left.\mathrm{C}=0\right)$), 1726 ($\mathrm{C}=0$) , 1660 ($\mathrm{C}=0$) , 1595, 1573, 1341, 1296, 1272, 1249, 1151, 1083, 1046, 982 and $842 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.54\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 2.13-2.18$ ($1 \mathrm{H}, \mathrm{m}$), 2.51-2.53 ($2 \mathrm{H}, \mathrm{m}$), 2.62-2.69 ($2 \mathrm{H}, \mathrm{m}$), $3.00(1 \mathrm{H}$, ddd, J 15.8, 3.9 and 2.0), $5.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.4, \mathrm{H}-5), 6.07(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3)$, 7.43-7.54 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime},-4^{\prime}$ and -5^{\prime}) and $7.74\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}-2^{\prime}\right.$ and $\left.-6^{\prime}\right) ; \mathrm{m} / \mathrm{z} 342\left(\mathrm{M}^{+}, 18 \%\right), 286$ (3), 269 (9), 241 (23), 199 (23), 196 (52), 147 (64), 140 (71), 123 (63), 112 (57), 105 (87), 91 (22), 81 (86), 77 (63), 69 (88), 57 (92) and 41 (100).
tert-B utyl \quad 5-ethox ycarbonyl-2-(4'-methox yphenyl)-4-oxo-7-phenyl-4,4a,5,6,7,7a-hexahydropyrano[2,3-c]pyrrole-4a-
carboxylate 15. To a solution of pyranone 3 d (0.1 g .0 .33 mmol) and imine $13(0.07 \mathrm{~g}, 0.36 \mathrm{mmol})$ in acetonitrile ($10 \mathrm{~cm}^{3}$), triethylamine ($0.035 \mathrm{~g}, 0.35 \mathrm{mmol}$) and lithium bromide (0.04 g , 0.46 mmol) were added. The reaction mixture was stirred for 8 h at room temperature, then was poured into saturated aqueous ammonium chloride ($6 \mathrm{~cm}^{3}$). The mixture was extracted with diethyl ether ($10 \mathrm{~cm}^{3}$) and the organic layer was dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$, evaporated and the residue was purified by flash chromatography on silica, eluting with light petroleum-ethyl acetate (1:1), to give the title compound 15 as a yellow powder (80 mg , 49\%), mp $111^{\circ} \mathrm{C}$ (Found: C, 68.3; H, 6.1: $\mathrm{N}, 2.9 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N} \mathrm{O}_{7}$ requires $\mathrm{C}, 68.3 ; \mathrm{H}, 6.1: \mathrm{N} 2.9 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1688(\mathrm{C}=0)$, 1606 ($\mathrm{C}=0$) , 1585, 1536, 1510, 1308, 1254, 1192, 1176, 1114, $1090,1022,998,913,866,837,798,775$ and $698 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.51\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right) 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eO}), 4.26$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2}\right), 5.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.7, \mathrm{H}-7 \mathrm{a}), 5.14(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5$, H-7), $5.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.7, \mathrm{H}-5), 6.53(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.87-6.91$ (2 $\mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$ and $\left.-5^{\prime}\right), 7.17-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.85-7.88(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-2^{\prime}$ and $\left.-6^{\prime}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 13.6(\mathrm{Me}), 27.5(3 \times \mathrm{Me})$, 45.4 $\left(\mathrm{CH}_{2}\right), 55.0(\mathrm{C}-5), 55.5(\mathrm{M} \mathrm{eO}), 58.4(\mathrm{C}-7), 66.4(\mathrm{C}-7 \mathrm{a}), 82.9$ (C-4a), 101.9 (C-3). 113.9 ($C-3^{\prime}$ and -5^{\prime}), 126.4 ($C-2^{\prime \prime}$ and
$-6^{\prime \prime}$), 128.0 ($\left(-1^{\prime}\right)$, 128.6 ($C-2^{\prime}$ and $\left.-6^{\prime}\right)$, 129.5 ($\left(-4^{\prime \prime}\right), 130.9$ ($\mathrm{C}-3^{\prime \prime}$ and $-5^{\prime \prime}$), 141.2 (C-1"), 163.5 (C-4'), 165.8 (C-2), 170.7 ($\mathrm{C}=0$), 171.8 ($\mathrm{C}=0$) and $192.2(\mathrm{C}-4) ; \mathrm{m} / \mathrm{z} 493\left(\mathrm{M}^{+}+1,2 \%\right), 437$ (2), 332 (5), 144 (8), 135 (10), 116 (9), 77 (24), 68 (18), 57 (100) and 41 (43).

Desilylation of D iels-A Ider adducts- general procedure

The tetrahydroflavone $\mathbf{1 2}(0.23 \mathrm{mmol})$ was dissolved in THF (5 cm^{3}) and 36% aqueous HCl (1 drop) was added. The reaction mixture was stirred for 44 h then saturated aqueous sodium hydrogen carbonate ($1 \mathrm{~cm}^{3}$) was added. The organic layer was separated, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated in vacuo. Recrystallisation from light petroleum gave the desired product 16.

4a-(tert-B utoxycarbonyl)-5-methoxy-2-phenyl-4a,5,6,7,8,8a-hexahydro-4H-benzo[b]pyran-4,7-dione 16a. White powder (90 $\mathrm{mg}, 82 \%$), mp $150-151^{\circ} \mathrm{C}$ (Found: C, 67.8; H, 6.6. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6}$ requires C, 67.7; $\mathrm{H}, 6.5 \%$); $v_{\max }(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1722$ ($\mathrm{C}=0$), 1656 ($\mathrm{C}=0$) , 1602, 1574, 1246, 1156, 1095, 1056, 1023, 978, 878 and 842; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.52\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right) 2.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.3$ and 15.6 , H-8), $2.85(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.2, \mathrm{H}-6), 3.04(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.6$ and 2.9 , H-8), 3.19 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.47-4.50 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 5.48-5.53 (1 $\mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 6.18(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.40-7.50\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime},-4^{\prime}\right.$ and -5^{\prime}) and $7.70-7.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and $\left.-6^{\prime}\right) ; \mathrm{m} / \mathrm{z} 372\left(\mathrm{M}^{+}, 16 \%\right), 315$ (47), 299 (11), 286 (8), 271 (35), 257 (11), 241 (29), 230 (19), 217 (40), 199 (37), 177 (38) 170 (53), 153 (62), 147 (57), 138 (51), 125 (48), 105 (59), 102 (53), 95 (67), 85 (68), 77 (40), 68 (100), 57 (53), 53 (68) and 41 (65).

4a-(tert-B utoxycarbonyl)-5-methoxy-2-(4'-methoxyphenyl)-4a,5,6,7,8,8a-hex ahydro-4H -benzo[b]pyran-4,7-dione 16b. White powder ($54 \mathrm{mg}, 58 \%$), mp $139-40^{\circ} \mathrm{C}$ (Found: C, 65.9: H, 6.7. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{7}$ requires C, 65.7; H, 6.5\%); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1734$ (C=O), 1645 ($C=0$), 1594, 1588, 1510, 1426, 1346, 1296, 1260, 1238, 1207, 1178, 1113, 1081, 1059, 1031, 979 and 878; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.47\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 2.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5$ and $4.2, \mathrm{H}-8)$, $2.85(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.3, \mathrm{H}-6), 3.02(1 \mathrm{H}, \mathrm{br}$ d, J $15.7, \mathrm{H}-8), 3.18(3 \mathrm{H}$, $\mathrm{s}, 5-\mathrm{OM} \mathrm{e}$), 3.86 ($3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{OM} \mathrm{e}$), 4.48-4.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 5.48$5.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 6.10(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.92(2 \mathrm{H}, \mathrm{d}, \mathrm{H}-3$ ' and -5^{\prime}) and $7.62\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}-2^{\prime}\right.$ and $\left.-6^{\prime}\right)$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 27.9\left(3 \times \mathrm{CH}_{3}\right)$, 43.2 (C-8), 43.4 (C-6), 55.5 (4 '- M eO), 58.6 (C-5), 58.3 (CM e ${ }^{2}$), 80.5 (C-8a), 81.6 ($5-\mathrm{M} \mathrm{eO}$), 83.6 (C-4a), 101.5 (C-3), 114.3 ($\mathrm{C}-3^{\prime}$ and -5^{\prime}), 124.4 ($\mathrm{C}-1^{\prime}$), 128.7 ($\mathrm{C}-2^{\prime}$ and -6^{\prime}), 162.8 (C-4'), $167.8(\mathrm{C}-2), 170.8\left(\mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}\right), 189.2(\mathrm{C}-4)$ and 204.5 (C-7); m/z 402 (M $\left.{ }^{+}, 41 \%\right), 370(10), 345(37), 329$ (13), 301 (13), 271 (30), 247 (25), 229 (21), 216 (11), 207 (20), 176 (100), 153 (17), 135 (68), 121 (49), 107 (32), 92 (37), 85 (52), 77 (53), 67 (41), 57 (40) and 42 (50).

M ethoxy group elimination- general procedure

The tetrahydroflavone (0.23 mmol) was dissolved in dichloromethane ($3 \mathrm{~cm}^{3}$) and TFAA (1 drop) was added. The reaction mixture was stirred for 30 min then saturated aqueous sodium hydrogen carbonate ($1 \mathrm{~cm}^{3}$) was added. The organic layer was separated, dried $\left(\mathrm{M} \mathrm{GSO}_{4}\right)$ and evaporated in vacuo. Recrystallisation from light petroleum gave the desired product 17.
4a-(tert-B utoxycarbonyl)-2-phenyl-4a,7,8,8a-tetrahydro-4H -benzo[b]pyran-4,7-dione 17a. White powder ($61 \mathrm{mg}, 78 \%$), mp $135-137{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 70.5$; $\mathrm{H}, 5.9 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $\mathrm{C}, 70.6$; $\mathrm{H}, 5.9 \%) ; v_{\max }\left(\mathrm{N}\right.$ ujol)/cm ${ }^{-1} 1731$ ($\mathrm{C}=0$), 1687 ($\mathrm{C}=0$), 1660 ($\mathrm{C}=0$) , 1601, 1571, 1334, 1294, 1272, 1252, 1151, 1103, 1062, 1028, 1007, 991 and $834 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.52\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 2.73(1 \mathrm{H}$, dd, J 17.2 and $2.6, \mathrm{H}-8$), $3.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.2$ and $3.9, \mathrm{H}-8)$, 5.48-5.50 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), $6.18(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 10.1, H-6), 6.64 (1 H , d, J 10.1, H -5), 7.42-7.54 (3 H, m, H-3', -4^{\prime} and -5^{\prime}) and 7.70-7.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$ and -6^{\prime}); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 27.8$ $\left(3 \times \mathrm{CH}_{3}\right), 40.0(\mathrm{C}-8), 58.7\left(\mathrm{CM} \mathrm{e}_{3}\right), 81.6(\mathrm{C}-8 \mathrm{a}), 84.3(\mathrm{C}-4 \mathrm{a})$, 102.8 ($(-3), 126.6$ ($C-2^{\prime}$ and -6^{\prime}), 128.8 ($\left(-3^{\prime}\right.$ and -5^{\prime}), 131.4 (C-4'), 131.8 ($\left(-1^{\prime}\right), 132.4$ (C-7), 140.6 (C-5), 166.1 $(\mathrm{C}-2), 170\left(\mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}\right), 187.2$ (C-4) and 193.3 (C-7); m/z 341 $\left(M^{+}+1,18 \%\right), 340\left(M^{+}, 7\right), 315(15), 215(38), 267(20), 241$ (21), 211 (19), 194 (28), 183 (13), 165 (13), 153 (24), 147 (57),

138 (58), 128 (29), 121 (61), 110 (33), 105 (80), 93 (48), 81 (76), 76 (91), 65 (55), 63 (65), 51 (71) and 42 (100).

4a-(tert-B utoxycarbonyl)-2-(4'-methox yphenyl)-4a,7,8,8a-tetrahydro-4H -benzo[b]pyran-4,7-dione 17b. White powder (42 $\mathrm{mg}, 49 \%$), mp $128^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 68.1 ; \mathrm{H}, 6.1 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$ requires C, 68.1; H, 6.0\%); $v_{\max }(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1726$ ($\left.\mathrm{C}=0\right), 1686(\mathrm{C}=0)$, 1661 (C=O), 1606, 1588, 1565, 1511, 1425, 1326, 1312, 1299, $1272,1239,1183,1155,1120,1102,1064,1036,1004$ and 898 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right), 1.52\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 2.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.2$ and $2.6, \mathrm{H}-8)$, 3.10 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.2$ and $4.1, \mathrm{H}-8$), 3.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $5.45-5.47$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), $6.10(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.1, \mathrm{H}-6$), $6.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 6.92(2 \mathrm{H}, \mathrm{d}, \mathrm{H}-3$ ' and -5$)$ and $7.67(2 \mathrm{H}, \mathrm{d}$, $\mathrm{H}-2^{\prime}$ and $\left.-6^{\prime}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 27.9\left(3 \times \mathrm{CH}_{3}\right), 40.2(\mathrm{C}-8), 55.6$ (OM e), 58.8 ($\mathrm{CM} \mathrm{e}_{3}$), 78.7 (C-8a), 84.3 (C-4a), 100.3 (C-3), 114.3 ($\left(-3^{\prime}\right.$ and -5^{\prime}), 123.7 ($\left(-1^{\prime}\right), 128.7$ ($C-2^{\prime}$ and -6^{\prime}), 130.7 (C-6), 141.0 (C-5), 163.3 (C-4'), 166.5 (C-2), 170.1 ($\mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$), 187.0 (C-4) and 193.7 (C-7); m/z $370\left(\mathrm{M}^{+}, 36 \%\right), 355$ (3), 315 (5), 297 (27), 270 (8), 240 (10), 194 (10), 176 (88), 149 (11), 135 (100), 121 (76), 107 (56), 92 (72), 77 (71), 69 (75), 65 (78), 57 (78), 43 (63) and 41 (80).

4a-(tert-B utox ycarbonyl)-7-hydroxy-2-phenyl-4a, 7,8,8a-tetrahydro-4H -benzo[b]pyran-4-one 18. Pyranone 17 a (0.17 g , 0.5 mmol) was dissolved in dry dichloromethane ($10 \mathrm{~cm}^{3}$) and sodium borohydride ($0.19 \mathrm{~g}, 5 \mathrm{mmol}$) and silica gel (1.0 g) were added. The reaction mixture was stirred for 24 h , then filtered, washed with water $\left(3 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated. The residue was purified by column chromatography on silica, eluting with light petroleum-ethyl acetate (2:1), to give 18 as a colourless oil ($0.16 \mathrm{~g}, 94 \%$) (Found: C, 69.9; H, 6.7. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$ requires C, 70.2; H, 6.5\%); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3431$ (OH), 2977, 2932, 1729 ($\mathrm{C}=0$), 1659 ($\mathrm{C}=\mathrm{O}$), 1603, 1573, 1494, 1450, 1392, 1389, 1343, 1256, 1156, 1057, 982, 913 and $843 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.52$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}$), 1.99-2.06 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 2.59-2.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 4.25 ($1 \mathrm{H}, \mathrm{br}$ s, OH), 5.32-5.33 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), $5.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.9, H-5), 6.12 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 6.18 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.9$ and $4.0, \mathrm{H}-6$), $7.42-7.55\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime},-4^{\prime}\right.$ and $\left.-5^{\prime}\right)$ and $7.72-7.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and $\left.-6^{\prime}\right) ; \mathrm{m} / \mathrm{z} 345\left(\mathrm{M}^{+}, 3 \%\right), 287(5), 268$ (8), 167 (8), 147 (47), 139 (27), 123 (28), 105 (54), 95 (28), 77 (60), 69 (45), 57 (100), 43 (52) and 41 (80).

Reaction of reduced flavones 12 with anthranilic acid derivatives 19- general procedure

Tetrahydroflavone $\mathbf{1 2}(0.4 \mathrm{mmol})$ and anthranilonitrile 19b (0.4 mmol) or ethyl anthranilate 19 a (0.4 mmol) were dissolved in toluene ($10 \mathrm{~cm}^{3}$) and PTSA ($5-10 \mathrm{mg}$) was added. The reaction mixture was refluxed for 3 h , then was cooled, diluted with diethyl ether ($15 \mathrm{~cm}^{3}$) and methanol ($3 \mathrm{~cm}^{3}$) and extracted with 5% aqueous sodium hydrogen carbonate $\left(4 \mathrm{~cm}^{3}\right)$. The organic layer was separated, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$, evaporated under reduced pressure and triturated with diethyl ether to give a white powder 20. The residue was separated by column chromatography on silica, eluting with light petroleum-ethyl acetate(1:1), to give the products $\mathbf{2 1}$ and 22 .

4-(2'-E thoxycarbonylanilino) benzoic acid 20a. From tetrahydroflavone 12a and ethyl anthranilate 19a. White-green powder ($56 \mathrm{mg}, 49 \%$), mp 198-200 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.3; H, 5.4; $\mathrm{N}, 4.9 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 67.4 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.9 \%$); $v_{\max }(\mathrm{N} \mathrm{ujol}) / \mathrm{cm}^{-1} 3291$ (NH), 1686 (C=O), 1682 (C=O), 1594, 1569, 1529, 1509, 1421, 1310, 1294, 1261, 1237, 1178, 1161, 1114, 1087, 1016, 929 and 867; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.29(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\left.\mathrm{CH}_{3}\right), 4.28\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2}\right), 6.97\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.9, \mathrm{H}-4^{\prime}\right), 7.22(2$ $\mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{H}-3$ and -5), $7.44-7.53$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$ and -6^{\prime}), 7.84 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{H}-2$ and -6), $7.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9, \mathrm{H}-3^{\prime}\right), 9.41(1 \mathrm{H}$, s, NH) and $12.56\left(1 \mathrm{H}, \mathrm{br} s, \mathrm{CO}_{2} \mathrm{H}\right)$; m/z $\left.285\left(\mathrm{M}^{+}, 100\right) \%\right), 239$ (77), 221 (41), 195 (84), 167 (84), 139 (43), 115 (15), 97 (15), 92 (64), 77 (48), 65 (71), 51 (52), 45 (82) and 43 (53).

N -($\mathbf{2}^{\prime \prime}$-E thoxycarbonylphenyl)-3-oxo-3-phenylpropionamide
22a. From tetrahydroflavone 12a and ethyl anthranilate 19a. Colourless oil ($21 \mathrm{mg}, 17 \%$) (HRMS : calc. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}$, 311.1158. Found $M, 311.1158$); $v_{\max }(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1689(\mathrm{C}=0)$,

1635, 1609, 1589, 1576, 1537, 1492, 1299, 1262, 1190, 1146, 1093, 1021, 993, 886 and 791 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.41\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right)$, 4.30 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$, keto form), $4.43\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.64(1$ $\left.\mathrm{H}, \mathrm{t}, \mathrm{H}-4^{\prime \prime}\right), 7.26-7.62\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime},-4^{\prime},-5^{\prime}\right.$ and $\left.-5^{\prime \prime}\right), 7.82(1 \mathrm{H}$, d, J 7.1, H-6"), 8.04-8.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$ and -6^{\prime}), 8.67-8.74 (1 H , $\left.\mathrm{m}, \mathrm{H}-3^{\prime \prime}\right), 11.54(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $14.02(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, enol form); m/z 311 (${ }^{+}$, 99\%), 266 (10), 238 (10), 192 (22), 165 (99), 146 (72), 137 (48), 132 (35), 119 (99), 105 (78), 92 (57), 77 (100), 69 (70), 64 (69), 51 (62) and 41 (43).

N -(2"-E thoxycarbonylphenyl)-3-oxo-3-(4'-methox yphenyl)propionamide 22b. From tetrahydroflavone 12b and ethyl anthranilate 19a. W hite powder ($30 \mathrm{mg}, 22 \%$), mp $110-111^{\circ} \mathrm{C}$ (Found: C, 66.8; $\mathrm{H}, 5.7 ; \mathrm{N}, 4.1 . \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires C, 66.8; H , 5.6; N, 4.1\%); $v_{\max }(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1688$ ($\mathrm{C}=0$), 1606, 1583, 1538, 1510, 1308, 1297, 1254, 1192, 1176, 1144, 1114, 1090, 1022, 998 and 914; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.29\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 3.9\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $4.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2\right.$, keto form), $4.30\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.05$ (2 $\mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathrm{H}-3^{\prime}$ and -5^{\prime}), $7.20\left(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-4^{\prime \prime}\right), 7.58\left(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-5^{\prime \prime}\right)$, 7.90 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.5$ and 7.9, H-6"), 7.99 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{H}-2^{\prime}$ and -6^{\prime}) and $8.22\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2, \mathrm{H}-3^{\prime \prime}\right) ; \mathrm{m} / \mathrm{z} 341\left(\mathrm{M}^{+}, 61 \%\right), 285(22)$, 239 (8), 195 (31), 177 (13), 165 (97), 150 (93), 135 (100), 119 (92), 107 (27), 92 (81), 77 (50), 65 (50) and 51 (20).

4-(2'-C yanoanilino) benzoic acid 20b. F rom tetrahydroflavone 12b and anthranilonitrile 19b. White powder ($62 \mathrm{mg}, 65 \%$), mp $182{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 70.5 ; \mathrm{H}, 4.2 ; \mathrm{N}, 11.8 . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 70.6; H, 4.2; N, 11.8\%); $v_{\max }\left(\mathrm{N}\right.$ ujol)/cm ${ }^{-1} 3326$ (N H), 2222 (CN), 1686 ($\mathrm{C}=0$) , 1596, 1521, 1316, 1286, 1255, 1207, 1170 , 1034, 1010, 937 and 845 ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] .05(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9, \mathrm{H}-3$ and -5), $7.07\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8, \mathrm{H}^{\prime}-4^{\prime}\right), 7.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8, \mathrm{H}-5), 7.54$ (1 H, d, J 8.0, H-6'), 7.59 (1 H, d, J $7.8, H^{\prime}-3^{\prime}$), 7.79 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9$, $\mathrm{H}-2,-6)$ and $8.76(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z} 238\left(\mathrm{M}^{+}, 48 \%\right), 220(47), 192$ (52), 166 (37), 136 (38), 105 (57), 91 (91), 75 (74), 63 (58) and 50 (100).

N -(2"-C yanophenyl)-3-oxo-3-phenylproprionamide 22c. From tetrahydroflavone 12a and anthranilonitrile 19b. Red crystals ($27 \mathrm{mg}, 28 \%$), mp $129^{\circ} \mathrm{C}$ (Found: C, 72.4; H, 4.8; N, 10.5. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 72.4; $\mathrm{H}, 4.9 ; \mathrm{N}, 10.6 \%$); $v_{\text {max }}(\mathrm{Nujol}) /$ $\mathrm{cm}^{-1} 3271,2229$ (CN), 1697, 1669, 1581 and 1540; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $4.20(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.21$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}$), 7.46-7.66 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$, $-4^{\prime},-5^{\prime},-5^{\prime \prime}$ and $\left.-6^{\prime \prime}\right), 8.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and $\left.-6^{\prime}\right), 8.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.5, H-3") and $11.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; m/z 264 ($\mathrm{M}^{+}, 50 \%$), 241 (30), 236 (32), 147 (57), 105 (80), 102 (53), 89 (40), 75 (100), 69 (95), 50 (89) and 43 (57).

Acknowledgements

We thank the EPSRC M ass Spectrometry Service, Swansea, for high resolution mass spectrometry. A grant from the N ational Fund for Science and Research, H ungary (OTK A Project No. W 015141) is gratefully appreciated.

R eferences

1 P. W. Groundwater and K. R. H. Solomons, J. Chem. Soc., Perkin Trans. 1, 1994, 173.
2 P. M. Evans, P. W. Groundwater, M. A. M unawar and K. R. H. Solomons, U'K Pat. A ppl., 9425409.1; PCT A ppl., G B 95/02948.
3 P. W. Groundwater, D. E. Hibbs, M . B. H ursthouse and M. N yerges, H eterocycles, 1996, 43, 745.
4 P. J. Cremins, S. T. Saengchantara and T. W. Wallace, Tetrahedron, 1987, 43, 3075.
5 Y.-G. Lee, K. Ishimaru, H. I wasakai, K. Ohkata and K .-Y. A kiba, J. Org. Chem., 1991, 56, 2058.

6 K. Ohkata, T. Kubo, K. M iyamoto, M. Ono, J. Yamamoto and K .-Y. A kiba, H eterocycles, 1994, 38, 1483.
7 S. T. Saengchantara and T. W. Wallace, J. C hem. Soc., Perkin Trans. 1, 1986, 789; F. M. Dean, M. AI-Sattar and D. A. Smith, J. Chem. Soc., Chem. Commun., 1983, 535; C. K. G hosh, N. Tewari and A. Bhattacharyya, Synthesis, 1984, 614; T. W. Wallace, I. Wardell, K .-D. Li and S. R. Challand, J. Chem. Soc., Chem. Commun., 1991, 1707; S. J. Coutts and T. W. Wallace, Tetrahedron, 1994, 50, 11 755; T. W. Wallace, I. Wardell, K.-D. Li, P. Leeming, A. D. Redhouse and S. R. Challand, J. Chem. Soc., Perkin Trans. 1, 1995, 2293.

8 C. K. G hosh, A. Bhattacharyya and C. Bandyopadhyay, J. Chem Soc., C hem. Commun., 1984, 1319.
9 U. Beifuss, H. Gehm, M. N oltemeyer and H.-G. Schmidt, A ngew. C hem., Int. Ed. Engl., 1995, 34, 647.
10 S. W. M cCombie, W. A. M etz, D. N azareno, B. B. Shankar and J. Tagat, J. O rg. C hem., 1991, 56, 4963.

11 G. A. Reynolds, J. A. Van Allan and A. K. Seidel, J. Heterocycl. Chem., 1979, 16, 369.
12 W. Borsche and W. Peter, Ann., 1927, 453, 148; M. P. Sammes, C. W. F. Leung, C. K. M ark and A. R. K atritzky, J. Chem. Soc., Perkin Trans. 1, 1981, 1585.
13 H. M eerwein, W. F lorina, N. Schon and G. Stopp, Ann., 1961, 641, 1.

14 S. K anemasa, M. Yoshioka and O. Tsuge, Bull. Chem. Soc. J pn., 1989, 62. 869; S. K anemasa, M. Yoshioka and O. Tsuge, J. Org. Chem., 1988, 53, 1384.
15 R. E. Harnon, J. L. Parsons, D. W. Cooke, S. K. Gupta and J. Scoolenberg, J. O rg. Chem., 1969, 34, 3684.

16 M . F. Semmelhack and R. D. Stauffer, J. Org. C hem., 1975, 40, 3619.
17 S. K. Shah, C. P. Dorn, P. E. Finke, J. J. H ale, W. K. Haggmann, K. A. Branse, G. O. Chandler, A. L. K issinger, B. M. A she, H. Weston, W. B. K night, A. L. M aycock, P. S. Dellea, D. S. Fletcher, K. M. H and, R. A. M umford, D. J. Underwood and J. B. D oherty, J. M ed. Chem., 1992, 35, 3745.

18 J. A. D arr, S. R. D rake and M. B. H ursthouse, Inorg. C hem., 1993, 32, 5704.
19 G. M. Sheldrick, A cta C rystallogr., Sect. A, 1990, 46, 467.
20 G. M. Sheldrick, SHELXL-93, Program for Crystal Structure R efinement, U niversity of G öttingen, G ermany.

Paper 6/02245E
Received 1st A pril 1996
A ccepted 27th A ugust 1996

[^0]: † Current address: School of Health Sciences, U niversity of Sunderland, Sunderland SR 1 3SD, UK .

[^1]: $\ddagger 1$ psi = 6894.76 Pa

[^2]: § For details, see Instructions for Authors, J. C hem. Soc., Perkin Trans. 1, 1996, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 207/62.

